计算题:假定某厂商只有一种可变要素劳动L,产出一种产品Q,固定成本为既定,短期生产函数Q=-0。1L3+6L2+12L,求:
(1)劳动的平均产量AP为最大值时的劳动人数
(2)劳动的边际产量MP为最大值时的劳动人数
(3)平均可变成本极小值时的产量
计算题:设某厂商只把劳动作为可变要素,其生产函数为Q=-0.01L3+L2+36L,Q为厂商每天产量,L为工人的日劳动小时数。所有市场均为完全竞争的,单位产品价格为0.10美元,小时工资率为4.8美元,试求当厂商利润极大时:(1)厂商每天将投入多少劳动小时?(2)如果厂商每天支付的固定成本为50美元,厂商每天生产的纯利润为多少?
点击查看答案
计算题:已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3-2Q2+15Q+10。试求:计算题:已知某完全竞争行业中的单个厂商的短期成本函数为STC=0.1Q3-2Q2+15Q+10。试求:(1)当市场上产品的价格为P=55时,厂商的短期均衡产量和利润;(2)当市场上价格下降为多少时,厂商必须停产;(3)厂商的短期供给函数
假定在短期生产的固定成本给定的条件下,某厂商使用一种可变要素L生产一种产品 (1)该生产函数的平均产量为极大值时的/使用量。 (2)该生产函数的平均可变成本为极小值时的总产量。
假定在短期生产的固定成本给定的条件下,某厂商使用一种可变要素L生产一种产品,其短期总成本函数为STC =5Q3 -18Q2 +100Q +160. 求:当产量Q为多少时,成本函数开始呈现出边际产量递减特征?
假定某厂商的短期生产函数为Q=f(L,K)给定生产要素价格PL、PK和产品P且利润π>0 证明:该厂商在短期生产的第一阶段不存在利润最大化的点。
假定某厂商短期生产的平均成本函数为SAC(Q)=200/Q+6-2Q+2Q^2,求该厂商的边际成本函数。
某企业生产一种产品,劳动为唯一可变要素,固定成本既定。短期生产函数Q=-0.1L3+6L22+12L,求: (1)劳动的平均产量函数和边际产量函数。 (2)企业雇用工人的合理范围是多少? (3)若已知劳动的价格为W=480,产品Q的价格为40,则当利润最大时,企业生产多少产品Q?