设f1(x)和f2(x)为二阶常系数线性齐次微分方程y"+py'+q=0的两个特解, 若由f1(x)和f2(x)能构成该方程的通解,下列哪个方程是其充分条件? A.f1(x) *f'2(x)-f2(x)f'1(x)=0 B.f1(x) * f’2(x)-f2(x) *f'1(x)≠0 C.f1(x)f'2(x)+f2(x)*f'1(x) =0 D.f1(x)f'2(x)+f2(x)*f'1(x) ≠0
点击查看答案
以y1=ex,y2=e-3x为特解的二阶线性常系数齐次微分方程是: A. y"-2y'-3y=0 B. y"+2y'-3y=0 C. y"-3y'+2y=0 D. y"+2y'+y=0
设函数f(x)具有二阶连续导数,且f(x)>0,f'(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是A.Af(0)>1,f"(0)>0 B.f(0)>1,f"(0)C.f(0)0 D.f(0)
若二阶常系数线性齐次微分方程y"+ay'+by=0的通解为y=(C1+C2x)e^x,则非齐次方程y"+ay'+by=x满足条件y(0)=2,y'(0)=0的解为y=________.
微分方程cosydx+(1+e-x)sinydy=0满足初始条件y x=0=π/3的特解是( )。
设y1(x)、y2(x)是二阶常系数线性微分方程y″+py′+qy=0的两个线性无关的解,则它的通解为______.
二阶线性常系数齐次微分方程y″+2y=0的通解为____.