已知生产函数Q=LK,当Q=10时,PL= 4,PK = 1
求(1)厂商最佳生产要素组合时资本和劳动的数量是多少?
(2)最小成本是多少?
已知某厂商使用L和K两种要素生产一种产品,其固定替代比例的生产函数为Q=4L+3K (1)作出等产量曲线。 (2)边际技术替代率是多少? (3)讨论其规模报酬情况。 (4)令PL=5、PK =3,求C=90时的K、L值以及最大产量。 (5)令PL =3、PK =3,求C=90时的K、L值以及最大产量。 (6)令PL =4、PK =3,求C=90时的K、L值以及最大产量。 (7)比较(4)、(5)和(6),你得到什么结论?
点击查看答案
已知一个厂商的生产函数Q=1/11(4KL - L2一K2),其中K和L分别表示资本和劳动,且要素市场价格分别为v和ω。产品的市场价格为P,而该企业仅是一个价格接受者。假设该厂商产品的市场需求函数Q=a-0.5P。若劳动力市场是完全竞争的,求该厂商对劳动的需求函数。
假定某厂商的短期生产函数为Q=f(L,K)给定生产要素价格PL、PK和产品P且利润π>0 证明:该厂商在短期生产的第一阶段不存在利润最大化的点。
已知生产函数Q=min{2L,3K},求: (1)当产量Q=36时,L与K值分别是多少? (2)如果生产要素的价格分别为PL =2、PK =5,则生产480单位产量时的最小成本是多少?
已知某厂商的固定投入比例的生产函数为Q=min{2L,3K} (1)令PL =1、PK =3,求厂商为了生产120单位产量所使用的K、L值以及最小成本。如果要素价格变化为PL =4、PK =2,厂商为了生产120单位产量所使用的K、L值以及最小成本又是多少?请予以比较与说明。 (2)令PL =4、PK =3,求C=180时的K、L值以及最大产量。
已知生产函数为Q= KL -0.5L2-0.32K2;其中,Q表示产量,K表示资本.L表示劳动,令式中K=10,求: (1)写出劳动的平均产量(APPL)函数和边际产量(MPPL)函数。 (2)分别计算当总产量、平均产量和边际产量达到极大值时厂商雇佣的劳动。 (3)求上述条件下厂商总产量、平均产量和边际产量的极大值。
已知生产函数为:求:(1)厂商长期生产的扩展线方程。 (2)当PL =1、PK=1、Q=1000时,厂商实现最小成本的要素投入组合。